Login

Chicago Wolves
GP: 5 | W: 4 | L: 1 | OTL: 0 | P: 8
GF: 25 | GA: 20 | PP%: 40.00% | PK%: 66.67%
GM : Chris Floresco | Morale : 60 | Team Overall : 61
Next Games #83 vs Belleville Senators
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Game Center
Belleville Senators
3-2-0, 6pts
5
FINAL
2 Chicago Wolves
4-1-0, 8pts
Team Stats
W3StreakW1
1-1-0Home Record1-1-0
2-1-0Away Record3-0-0
3-2-0Last 10 Games4-1-0
3.60Goals Per Game5.00
3.00Goals Against Per Game4.00
41.67%Power Play Percentage40.00%
75.00%Penalty Kill Percentage66.67%
Chicago Wolves
4-1-0, 8pts
5
FINAL
2 Bridgeport Islanders
1-4-0, 2pts
Team Stats
W1StreakL4
1-1-0Home Record1-2-0
3-0-0Away Record0-2-0
4-1-0Last 10 Games1-4-0
5.00Goals Per Game2.40
4.00Goals Against Per Game4.00
40.00%Power Play Percentage6.25%
66.67%Penalty Kill Percentage80.00%
Chicago Wolves
4-1-0, 8pts
2023-09-21
Belleville Senators
3-2-0, 6pts
Team Stats
W1StreakW3
1-1-0Home Record1-1-0
3-0-0Away Record2-1-0
4-1-0Last 10 Games3-2-0
5.00Goals Per Game3.60
4.00Goals Against Per Game3.60
40.00%Power Play Percentage41.67%
66.67%Penalty Kill Percentage75.00%
Utica Comets
4-1-0, 8pts
2023-09-22
Chicago Wolves
4-1-0, 8pts
Team Stats
W3StreakW1
3-0-0Home Record1-1-0
1-1-0Away Record3-0-0
4-1-0Last 10 Games4-1-0
4.20Goals Per Game5.00
3.40Goals Against Per Game5.00
16.67%Power Play Percentage40.00%
80.00%Penalty Kill Percentage66.67%
Wilkes-Barre/Scranton Penguins
2-2-1, 5pts
2023-09-23
Chicago Wolves
4-1-0, 8pts
Team Stats
W1StreakW1
0-2-1Home Record1-1-0
2-0-0Away Record3-0-0
2-2-1Last 10 Games4-1-0
4.20Goals Per Game5.00
5.60Goals Against Per Game5.00
25.00%Power Play Percentage40.00%
72.73%Penalty Kill Percentage66.67%
Team Leaders
Goals
Arthur Kaliyev
6
Assists
Quinton Byfield
6
Points
Arthur Kaliyev
10
Plus/Minus
Urho Vaakanainen
8
Wins
Chris Driedger
4
Save Percentage
Chris Driedger
0.878

Team Stats
Goals For
25
5.00 GFG
Shots For
213
42.60 Avg
Power Play Percentage
40.0%
6 GF
Offensive Zone Start
43.8%
Goals Against
20
4.00 GAA
Shots Against
164
32.80 Avg
Penalty Kill Percentage
66.7%%
5 GA
Defensive Zone Start
36.2%
Team Info

General ManagerChris Floresco
CoachDave Lowry
DivisionCentral
ConferenceWestern Conference
CaptainAlex Wennberg
Assistant #1
Assistant #2


Arena Info

Capacity8,000
Attendance0
Season Tickets0


Roster Info

Pro Team20
Farm Team22
Contract Limit42 / 45
Prospects2


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name #C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary
1Jack McBain86XX100.00876077687669756065716573545658060690231883,750$
2Jason Dickinson81XX100.007248857077718862717362765465590606902822,650,000$
3Arthur Kaliyev17X100.00704087678264806551746767615858060680222894,167$
4Quinton Byfield49X100.00684377648165676168726068645657060660212894,167$
5Jansen Harkins20XXX100.00635777636661696066646368546057060630262850,000$
6Anders Bjork27XX100.005748786169646859536459656062580606202711,600,000$
7Nathan Smith58XX100.00615270616567625757616059565857060610241883,750$
8Pontus Holmberg80XX100.00594973616959595968625963545755060610241827,500$
9Oskar Steen48XXX100.00555766616065635969575962546056060600252800,000$
10Topi Ronni (R)70XX100.00454545454545454545454545454545060450194750,000$
11Stephen Halliday (R)82XX100.00454545454545454545454545454545060450214750,000$
12Braden Schneider23X100.00706692707973796040716081545758060690222925,000$
13Urho Vaakanainen28X100.00654191597676605640705578545658060660242850,000$
14Marcus Bjork72X100.00594763576966585538605564515654060590251925,000$
15Simon Edvinsson26X100.00545060566963595538565558514949060570203925,000$
16Elias Salomonsson (R)71X100.00454545454545454545454545454545060450194750,000$
Scratches
1Brayden Pachal0X100.00595362606666645640585563545855060590241750,000$
TEAM AVERAGE100.0061507060676364565362576454555406060
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name #CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPAgeContractSalary
1Akira Schmid39100.0081656585777281727570775654060740232850,833$
Scratches
1Chris Driedger194.00646262776760706062606766590606402923,500,000$
2Matt Tomkins0100.0051515151515151515151515151060510291750,000$
TEAM AVERAGE98.006559597165616761636065585506063
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Dave Lowry75757575757575CAN5830$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Arthur KaliyevChicago Wolves (CAR)RW564103008121961831.58%18416.9021359000000158.33%1200012.3700000201
2Quinton ByfieldChicago Wolves (CAR)C52683401210226149.09%08416.9902269000001066.38%11600001.8800000101
3Jansen HarkinsChicago Wolves (CAR)C/LW/RW5257300125225199.09%39218.4802229000171060.00%1000001.5200000021
4Nathan SmithChicago Wolves (CAR)C/RW525742099215289.52%08917.84112410000000175.00%400001.5700000020
5Urho VaakanainenChicago Wolves (CAR)D5055840935020.00%98517.020000000003000.00%000001.1800000000
6Pontus HolmbergChicago Wolves (CAR)LW/RW5224-14059931222.22%06012.1800000000000171.43%700001.3100000000
7Anders BjorkChicago Wolves (CAR)LW/RW5314-100410234913.04%28617.251123110002141050.00%600000.9300000000
8Oskar SteenChicago Wolves (CAR)C/LW/RW5134-10024126158.33%17014.1511248000010057.50%8000001.1300000000
9Braden SchneiderChicago Wolves (CAR)D1022100421030.00%12121.520001200005000.00%000001.8600000000
10Simon EdvinssonChicago Wolves (CAR)D5101-4005461516.67%46513.150000000000000.00%000000.3000000000
11Jack McBainChicago Wolves (CAR)C/LW11011202350420.00%11919.1700011000140050.00%200001.0400000000
12Jason DickinsonChicago Wolves (CAR)C/LW1011100155280.00%02020.3800011000050060.71%2800000.9800000000
13Elias SalomonssonChicago Wolves (CAR)D5000-400802120.00%06513.150000000000000.00%000000.00%00000000
14Topi RonniChicago Wolves (CAR)C/LW5000-200210200.00%1438.6800000000000025.00%400000.00%00000000
15Marcus BjorkChicago Wolves (CAR)D5000-22010213260.00%1438.6700000000000033.33%300000.00%00000000
16Stephen HallidayChicago Wolves (CAR)C/LW5000-200250000.00%0438.6800000000000040.68%5900000.00%00000000
Team Total or Average68203454718095841654314512.12%2497614.36581327650004433357.70%33100011.1100000343
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Chris DriedgerChicago Wolves (CAR)54100.8784.0030020201640000.00%050000
Team Total or Average54100.8784.003002020164000050000


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Waiver Possible Contract Type Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Link
Akira SchmidChicago Wolves (CAR)G235/12/2000No205 Lbs6 ft5NoNoNoNo2Pro & Farm850,833$0$0$No850,833$Link
Anders Bjork (1 Way Contract)Chicago Wolves (CAR)LW/RW278/5/1996No190 Lbs6 ft0NoNoNoNo1Pro & Farm1,600,000$1,600,000$1,600,000$NoLink
Arthur KaliyevChicago Wolves (CAR)RW226/26/2001No210 Lbs6 ft2NoNoNoNo2Pro & Farm894,167$0$0$No894,167$Link
Braden SchneiderChicago Wolves (CAR)D229/20/2001No208 Lbs6 ft3NoNoNoNo2Pro & Farm925,000$0$0$No925,000$Link
Brayden PachalChicago Wolves (CAR)D248/23/1999No203 Lbs6 ft2NoNoNoNo1Pro & Farm750,000$0$0$NoLink
Chris Driedger (Out of Payroll)Chicago Wolves (CAR)G295/18/1994No207 Lbs6 ft4NoNoNoNo2Pro & Farm3,500,000$0$0$No3,500,000$Link
Elias SalomonssonChicago Wolves (CAR)D198/31/2004 4:46:17 AMYes183 Lbs6 ft1NoNoNoNo4Pro & Farm750,000$0$0$No750,000$750,000$750,000$
Jack McBainChicago Wolves (CAR)C/LW231/6/2000No201 Lbs6 ft3NoNoNoNo1Pro & Farm883,750$0$0$NoLink
Jansen HarkinsChicago Wolves (CAR)C/LW/RW265/23/1997No197 Lbs6 ft2NoNoNoNo2Pro & Farm850,000$0$0$No850,000$Link
Jason Dickinson (1 Way Contract)Chicago Wolves (CAR)C/LW287/4/1995No200 Lbs6 ft2NoNoNoNo2Pro & Farm2,650,000$2,650,000$2,650,000$No2,650,000$Link
Marcus BjorkChicago Wolves (CAR)D2511/24/1997No211 Lbs6 ft4NoNoNoNo1Pro & Farm925,000$0$0$NoLink
Matt TomkinsChicago Wolves (CAR)G296/19/1994No194 Lbs6 ft3NoNoNoNo1Pro & Farm750,000$0$0$NoLink
Nathan SmithChicago Wolves (CAR)C/RW2410/19/1998No177 Lbs6 ft0NoNoNoNo1Pro & Farm883,750$0$0$NoLink
Oskar SteenChicago Wolves (CAR)C/LW/RW253/9/1998No193 Lbs5 ft10NoNoNoNo2Pro & Farm800,000$0$0$No800,000$Link
Pontus HolmbergChicago Wolves (CAR)LW/RW243/9/1999No202 Lbs6 ft0NoNoNoNo1Pro & Farm827,500$0$0$NoLink
Quinton ByfieldChicago Wolves (CAR)C218/19/2002No220 Lbs6 ft5NoNoNoNo2Pro & Farm894,167$0$0$No894,167$Link
Simon EdvinssonChicago Wolves (CAR)D202/5/2003No209 Lbs6 ft6NoNoNoNo3Pro & Farm925,000$0$0$No925,000$925,000$Link
Stephen HallidayChicago Wolves (CAR)C/LW217/2/2002 2:32:31 AMYes214 Lbs6 ft4NoNoNoNo4Pro & Farm750,000$0$0$No750,000$750,000$750,000$
Topi RonniChicago Wolves (CAR)C/LW195/5/2004 3:39:10 AMYes181 Lbs6 ft2NoNoNoNo4Pro & Farm750,000$0$0$No750,000$750,000$750,000$
Urho VaakanainenChicago Wolves (CAR)D241/1/1999No200 Lbs6 ft2NoNoNoNo2Pro & Farm850,000$0$0$No850,000$Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2023.75200 Lbs6 ft22.001,100,458$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Jansen HarkinsQuinton ByfieldArthur Kaliyev30122
2Jack McBainJason DickinsonNathan Smith30122
3Anders BjorkOskar SteenPontus Holmberg25122
4Topi RonniStephen HallidayMarcus Bjork15122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Braden Schneider30122
2Urho Vaakanainen30122
3Elias SalomonssonSimon Edvinsson25131
4Braden Schneider15122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Jansen HarkinsQuinton ByfieldArthur Kaliyev60113
2Jack McBainJason DickinsonNathan Smith40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Braden SchneiderAnders Bjork60113
2Oskar Steen40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Jason DickinsonAnders Bjork60131
2Jansen HarkinsJack McBain40131
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Braden Schneider60140
2Urho Vaakanainen40140
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Jason Dickinson60140Braden Schneider60140
2Jansen Harkins40140Urho Vaakanainen40140
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Quinton ByfieldArthur Kaliyev60122
2Jason DickinsonNathan Smith40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Braden Schneider60122
2Urho Vaakanainen40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Jack McBainQuinton ByfieldArthur KaliyevBraden Schneider
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Jack McBainJason DickinsonAnders BjorkBraden Schneider
Extra Forwards
Normal PowerPlayPenalty Kill
Jason Dickinson, Jack McBain, Nathan SmithJack McBain, Nathan SmithJansen Harkins
Extra Defensemen
Normal PowerPlayPenalty Kill
, Urho Vaakanainen, Simon EdvinssonUrho Vaakanainen,
Penalty Shots
Arthur Kaliyev, Jack McBain, Nathan Smith, Quinton Byfield, Jansen Harkins
Goalie
#1 : , #2 : Akira Schmid
Custom OT Lines Forwards
Arthur Kaliyev, Jansen Harkins, Quinton Byfield, Jack McBain, Nathan Smith, Jason Dickinson, Jason Dickinson, Anders Bjork, Oskar Steen, Pontus Holmberg, Stephen Halliday
Custom OT Lines Defensemen
Braden Schneider, , Urho Vaakanainen, , Elias Salomonsson


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Belleville Senators1010000025-31010000025-30000000000000.00024600116803565767203710626000.00%3233.33%011419558.46%9016155.90%488953.93%12993108326232
2Bridgeport Islanders11000000523000000000001100000052321.000591400116803665767203371424200.00%7185.71%011419558.46%9016155.90%488953.93%12993108326232
3Laval Rocket220000001394110000006421100000075241.000132336001168090657672063226567342.86%3166.67%011419558.46%9016155.90%488953.93%12993108326232
4Lehigh Valley Phantoms11000000541000000000001100000054121.0005914001168052657672031104266350.00%2150.00%011419558.46%9016155.90%488953.93%12993108326232
Total54100000252052110000089-1330000001711680.80025457000116802136576720164493013215640.00%15566.67%011419558.46%9016155.90%488953.93%12993108326232
_Since Last GM Reset54100000252052110000089-1330000001711680.80025457000116802136576720164493013215640.00%15566.67%011419558.46%9016155.90%488953.93%12993108326232

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
58W1254570213164493013200
All Games
GPWLOTWOTL SOWSOLGFGA
54100002520
Home Games
GPWLOTWOTL SOWSOLGFGA
211000089
Visitor Games
GPWLOTWOTL SOWSOLGFGA
33000001711
Last 10 Games
WLOTWOTL SOWSOL
410000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
15640.00%15566.67%0
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
657672011680
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
11419558.46%9016155.90%488953.93%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
12993108326232


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2023-09-159Laval Rocket4Chicago Wolves6BWBoxScore
2 - 2023-09-1623Chicago Wolves5Lehigh Valley Phantoms4AWBoxScore
4 - 2023-09-1836Chicago Wolves7Laval Rocket5AWBoxScore
5 - 2023-09-1955Belleville Senators5Chicago Wolves2BLBoxScore
6 - 2023-09-2077Chicago Wolves5Bridgeport Islanders2AWBoxScore
7 - 2023-09-2183Chicago Wolves-Belleville Senators-
8 - 2023-09-2297Utica Comets-Chicago Wolves-
9 - 2023-09-23114Wilkes-Barre/Scranton Penguins-Chicago Wolves-
11 - 2023-09-25137Syracuse Crunch-Chicago Wolves-
13 - 2023-09-27150Chicago Wolves-Wilkes-Barre/Scranton Penguins-
15 - 2023-09-29172Charlotte Checkers-Chicago Wolves-
17 - 2023-10-01189Chicago Wolves-Toronto Marlies-
19 - 2023-10-03202Cleveland Monsters-Chicago Wolves-
21 - 2023-10-05218Chicago Wolves-Rochester Americans-
23 - 2023-10-07238Lehigh Valley Phantoms-Chicago Wolves-
24 - 2023-10-08246Chicago Wolves-Cleveland Monsters-
25 - 2023-10-09270Chicago Wolves-Springfield Thunderbirds-
26 - 2023-10-10283Rochester Americans-Chicago Wolves-
27 - 2023-10-11293Providence Bruins-Chicago Wolves-
29 - 2023-10-13315Chicago Wolves-Hershey Bears-
30 - 2023-10-14334Abbotsford Canucks-Chicago Wolves-
32 - 2023-10-16353Chicago Wolves-Providence Bruins-
33 - 2023-10-17361Chicago Wolves-Abbotsford Canucks-
34 - 2023-10-18371Hartford Wolf Pack-Chicago Wolves-
35 - 2023-10-19391Chicago Wolves-Syracuse Crunch-
36 - 2023-10-20402Toronto Marlies-Chicago Wolves-
Trade Deadline --- Trades can’t be done after this day is simulated!
38 - 2023-10-22431Hershey Bears-Chicago Wolves-
39 - 2023-10-23450Springfield Thunderbirds-Chicago Wolves-
41 - 2023-10-25470Chicago Wolves-Hartford Wolf Pack-
43 - 2023-10-27483Bridgeport Islanders-Chicago Wolves-
44 - 2023-10-28487Chicago Wolves-Charlotte Checkers-
45 - 2023-10-29502Chicago Wolves-Utica Comets-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Capacity45003500
Ticket Price350
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueCapacityTeam Popularity
14 0 - 0.00% 0$0$8000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
0$ 1,425,917$ 1,200,917$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 0$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 41 0$ 0$




Chicago Wolves Players Stat Leaders (Regular Season)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Chicago Wolves Goalies Stat Leaders (Regular Season)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Chicago Wolves Career Team Stats

OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Chicago Wolves Players Stat Leaders (Play-Off)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Chicago Wolves Goalies Stat Leaders (Play-Off)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA