Login

Chicago Wolves
GP: 49 | W: 32 | L: 13 | OTL: 4 | P: 68
GF: 287 | GA: 166 | PP%: 24.00% | PK%: 77.78%
GM : Chris Fekete | Morale : 40 | Team Overall : 60
Next Games #785 vs Bridgeport Islanders
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Game Center
Chicago Wolves
32-13-4, 68pts
2
FINAL
4 Texas Stars
26-18-4, 56pts
Team Stats
W1StreakL1
19-4-2Home Record15-9-2
13-9-2Home Record11-9-2
8-1-1Last 10 Games6-4-0
5.86Goals Per Game4.21
3.39Goals Against Per Game2.96
24.00%Power Play Percentage20.00%
77.78%Penalty Kill Percentage73.53%
Cleveland Monsters
32-16-1, 65pts
1
FINAL
5 Chicago Wolves
32-13-4, 68pts
Team Stats
L1StreakW1
17-7-0Home Record19-4-2
15-9-1Home Record13-9-2
4-5-1Last 10 Games8-1-1
6.45Goals Per Game5.86
3.67Goals Against Per Game3.39
16.67%Power Play Percentage24.00%
88.46%Penalty Kill Percentage77.78%
Chicago Wolves
32-13-4, 68pts
Day 112
Bridgeport Islanders
30-15-2, 62pts
Team Stats
W1StreakW2
19-4-2Home Record14-8-1
13-9-2Away Record16-7-1
8-1-1Last 10 Games9-1-0
5.86Goals Per Game4.94
3.39Goals Against Per Game4.94
24.00%Power Play Percentage31.65%
77.78%Penalty Kill Percentage76.03%
Chicago Wolves
32-13-4, 68pts
Day 115
Hartford Wolf Pack
20-26-2, 42pts
Team Stats
W1StreakW2
19-4-2Home Record9-13-1
13-9-2Away Record11-13-1
8-1-1Last 10 Games6-3-1
5.86Goals Per Game4.17
3.39Goals Against Per Game4.17
24.00%Power Play Percentage19.48%
77.78%Penalty Kill Percentage79.22%
Rockford IceHogs
35-10-3, 73pts
Day 117
Chicago Wolves
32-13-4, 68pts
Team Stats
W1StreakW1
16-6-3Home Record19-4-2
19-4-0Away Record13-9-2
8-1-1Last 10 Games8-1-1
5.21Goals Per Game5.86
2.81Goals Against Per Game5.86
31.33%Power Play Percentage24.00%
76.13%Penalty Kill Percentage77.78%
Team Leaders
Goals
Alex Steeves
48
Assists
Max Comtois
54
Points
Alex Steeves
101
Plus/Minus
Jesse Ylonen
74
Wins
Kevin Mandolese
29
Save Percentage
Kevin Mandolese
0.906

Team Stats
Goals For
287
5.86 GFG
Shots For
3046
62.16 Avg
Power Play Percentage
24.0%
24 GF
Offensive Zone Start
44.9%
Goals Against
166
3.39 GAA
Shots Against
1910
38.98 Avg
Penalty Kill Percentage
77.8%%
20 GA
Defensive Zone Start
36.9%
Team Info

General ManagerChris Fekete
DivisionCentral
ConferenceWestern Conference
CaptainMax Comtois
Assistant #1Akito Hirose
Assistant #2Sasha Chmelevski


Arena Info

Capacity3,000
Attendance0
Season Tickets0


Roster Info

Pro Team27
Farm Team20
Contract Limit47 / 50
Prospects24


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary
1Morgan BarronX100.007564867384608860695866735460580406702611,350,000$
2Blake LizotteXX100.007540856969648660706065735464590406602721,850,000$
3Cody GlassX100.006740777377687361696166626860580406602512,500,000$
4Alex SteevesX100.00566270676870676756646566686157040650251775,000$
5Angus CrookshankX100.00605571706565646355616465556057040640251775,000$
6Max Comtois (C)X100.00595764637470686556626263626257040640261900,000$
7Oliver WahlstromX100.007140866676626757546059627460580406202411,000,000$
8Fyodor Svechkov (R)X100.00555869616667646270606066575452040620213975,000$
9Jesse YlonenX100.00574087597860755755586264665758040610251775,000$
10William LockwoodX100.00666478626659615856585868556058040610263900,000$
11Maxim Groshev (R)X100.00555868616869666055605866545754040610232875,000$
12Bradly Nadeau (R)X100.00574082555976555451595360545458040580193975,000$
13Skyler Brind'AmourX100.00545469566866645655555562546156040580253700,000$
14Alexander CampbellX100.00545570556156555555545560575754040560231700,000$
15Brandon ScanlinX100.00575669607770675841575866556157040620252775,000$
16Drew Helleson (R)X100.00565767597267655840585563545754040600232925,000$
17Lucas JohansenX100.00575471566863595741595566556359040600273995,000$
18Akito Hirose (A)X100.00565472566563615541565563556157040590251787,500$
19Drew BavaroX100.00575469547155555440545459545955040570241867,500$
Scratches
1Ben SteevesX100.00565469555756555455545460545553040560222950,000$
2Maxim Barbashev (R)X100.00545470546754545455545459545452040560213950,000$
3Sasha Chmelevski (R) (A)X100.00555555555555555555555555555555040550251725,000$
4Lauri Pajuniemi (R)X100.00555555555555555555555555555555040550253750,000$
5Chaz Lucius (R)X100.00555555555555555555555555555555040550253975,000$
6Sean Behrens (R)X100.00545470546154545440545459545452040560212925,000$
TEAM AVERAGE100.0059537160676264585458586357585604060
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPAgeContractSalary
1Kevin Mandolese100.0060636168655768626162615854040620241775,000$
2Dylan Wells100.0060616161645768626162706256040620271750,000$
Scratches
TEAM AVERAGE100.006062616565576862616266605504062
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Alex SteevesChicago Wolves (CAR)C4948531016948207212837811730012.70%3190818.5544836600003776262.31%135300042.2200112852
2Max ComtoisChicago Wolves (CAR)LW4936549045607075375922879.60%1982916.92561143770001103163.16%9500022.1700000245
3Jesse YlonenChicago Wolves (CAR)RW49305080748052663561052348.43%2486217.601012450000001168.12%6900021.8500000353
4Brandon ScanlinChicago Wolves (CAR)D49173451452209540126356113.49%6096419.684261554000119000%000011.0600000105
5Mark KastelicCarolina HurricanesC30242549151955188249641819.64%3251017.0344821290000121169.47%77300011.9200010043
6Angus CrookshankChicago Wolves (CAR)LW49282149201608987307652179.12%3773615.03000290002383157.14%9100011.3311000132
7Morgan BarronChicago Wolves (CAR)RW171422362219544241383010910.14%1036821.661781832000001080.00%2500001.9612001421
8Cody GlassChicago Wolves (CAR)LW2213213418404129142341079.15%543319.700002140112301053.85%5200011.5702000210
9Fyodor SvechkovChicago Wolves (CAR)C2412223421951548131311169.16%343818.280221146000142064.30%63300001.5502100102
10Akito HiroseChicago Wolves (CAR)D491321343660512881195016.05%6586717.7001165200014010%000000.7800000013
11Oliver WahlstromChicago Wolves (CAR)RW2411172822120372214333987.69%546919.561341346000004063.89%3600001.1911000112
12Blake LizotteChicago Wolves (CAR)C/LW1771522226026417223709.72%830718.07000001012292066.00%45000011.4300000101
13Drew HellesonChicago Wolves (CAR)D248142226100521549142816.33%4149620.6700004011135100%000010.8900000201
14Lucas JohansenChicago Wolves (CAR)D24517222514028175121399.80%2548420.171561048000032000%000010.9100000120
15Drew BavaroChicago Wolves (CAR)D49410142120073154914428.16%5662912.8500000000140100%000000.4400000001
16Sean BehrensChicago Wolves (CAR)D151891540175225124.55%1732521.71011629000019000%000000.5500000000
17Mavrik BourqueCarolina HurricanesC744810072034113511.76%214721.14213722000013052.08%19200001.0800000010
18Bradly NadeauChicago Wolves (CAR)LW212577406124816224.17%21909.05123942000001052.38%2100000.7400000000
19William LockwoodChicago Wolves (CAR)RW6033020711256130%011218.7400000000000033.33%600000.5300000000
20Sam MalinskiCarolina HurricanesD2033200502040%14623.380000000015000%000001.2800000010
21Maxim GroshevChicago Wolves (CAR)LW51122001661216.67%0397.91000000001800100.00%400001.0100000000
22Kevin LabancCarolina HurricanesRW11011003263016.67%01717.720000000000000%100001.1300000001
23Maxim BarbashevChicago Wolves (CAR)C1101130046153100%1605.4700000000000067.14%7000000.3300000000
24Skyler Brind'AmourChicago Wolves (CAR)C2000100013010%0136.9200000000030045.83%240000000000000
Team Total or Average59527942170051322935846786280874220389.94%4441026017.242438622236221231737330763.90%3895000151.3638223273032
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Kevin MandoleseChicago Wolves (CAR)4329940.9062.9125392112313030000.57114424120
2Dustin WolfCarolina Hurricanes2816930.9183.73168721105128103000280201
3Dylan WellsChicago Wolves (CAR)11000.9202.00600022500000149000
Team Total or Average72461870.9123.224287422302609030147153321


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Country Rookie Weight Height No Trade Available For Trade Acquired By Last Trade Date Force Waivers Waiver Possible Contract Contract Signature Date Force UFA Emergency Recall Type Current Salary Salary RemainingSalary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Salary Cap Year 2Salary Cap Year 3Salary Cap Year 4Salary Cap Year 5Salary Cap Year 6Salary Cap Year 7Salary Cap Year 8Salary Cap Year 9Salary Cap Year 10No Trade Year 2No Trade Year 3No Trade Year 4No Trade Year 5No Trade Year 6No Trade Year 7No Trade Year 8No Trade Year 9No Trade Year 10Link
Akito HiroseChicago Wolves (CAR)D251999-04-09CANNo169 Lbs6 ft0NoNoAssign ManuallyNoYes12024-08-03FalseFalsePro & Farm787,500$336,920$0$0$No---------------------------Link
Alex SteevesChicago Wolves (CAR)C251999-12-10USANo195 Lbs6 ft0NoNoAssign ManuallyNoYes12024-09-14FalseFalsePro & Farm775,000$331,572$0$0$No---------------------------Link
Alexander CampbellChicago Wolves (CAR)LW232001-02-27CANNo176 Lbs5 ft10NoNoAssign ManuallyNoNo12024-09-14FalseFalsePro & Farm700,000$299,485$0$0$No---------------------------Link
Angus CrookshankChicago Wolves (CAR)LW251999-10-02CANNo180 Lbs5 ft10NoNoAssign ManuallyNoYes12024-09-14FalseFalsePro & Farm775,000$331,572$0$0$No---------------------------Link / NHL Link
Ben SteevesChicago Wolves (CAR)C222002-05-10USANo165 Lbs5 ft8NoNoAssign ManuallyNoNo22024-09-14FalseFalsePro & Farm950,000$406,443$0$0$No950,000$--------950,000$--------No--------Link
Blake LizotteChicago Wolves (CAR)C/LW271997-12-13USANo173 Lbs5 ft8NoNoTrade2024-12-05NoYes22024-09-14FalseFalsePro & Farm1,850,000$791,495$0$0$No1,850,000$--------1,850,000$--------No--------Link / NHL Link
Bradly NadeauChicago Wolves (CAR)LW192005-05-05CANYes160 Lbs5 ft10NoNoDraftNoNo32024-09-23FalseFalsePro & Farm975,000$417,139$0$0$No975,000$975,000$-------975,000$975,000$-------NoNo-------Link
Brandon ScanlinChicago Wolves (CAR)D251999-06-02CANNo217 Lbs6 ft3NoNoAssign ManuallyNoYes22024-09-14FalseFalsePro & Farm775,000$331,572$0$0$No775,000$--------775,000$--------No--------Link
Chaz Lucius Chicago Wolves (CAR)C251999-09-24NAYes100 Lbs4 ft0NoNoProspectNoYes32024-09-23FalseFalsePro & Farm975,000$417,139$0$0$No975,000$975,000$-------975,000$975,000$-------NoNo-------
Cody GlassChicago Wolves (CAR)LW251999-04-01CANNo204 Lbs6 ft3NoNoAssign ManuallyNoYes12024-08-03FalseFalsePro & Farm2,500,000$1,069,588$0$0$No---------------------------Link / NHL Link
Drew BavaroChicago Wolves (CAR)D242000-06-10USANo198 Lbs6 ft2NoNoAssign ManuallyNoNo12024-09-14FalseFalsePro & Farm867,500$371,147$0$0$No---------------------------Link
Drew HellesonChicago Wolves (CAR)D232001-03-26USAYes189 Lbs6 ft3NoNoDraftNoNo22024-09-23FalseFalsePro & Farm925,000$395,747$0$0$No925,000$--------925,000$--------No--------Link
Dylan WellsChicago Wolves (CAR)G271998-01-03CANNo189 Lbs6 ft2NoNoAssign ManuallyNoYes12024-09-14FalseFalsePro & Farm750,000$320,876$0$0$No---------------------------Link
Fyodor SvechkovChicago Wolves (CAR)C212003-04-05RUSYes187 Lbs6 ft0NoNoDraftNoNo32024-09-23FalseFalsePro & Farm975,000$417,139$0$0$No975,000$975,000$-------975,000$975,000$-------NoNo-------Link
Jesse YlonenChicago Wolves (CAR)RW251999-10-03USANo200 Lbs6 ft0NoNoAssign ManuallyNoYes12024-09-14FalseFalsePro & Farm775,000$331,572$0$0$No---------------------------Link
Kevin MandoleseChicago Wolves (CAR)G242000-08-22CANNo180 Lbs6 ft4NoNoTrade2024-12-09NoNo12024-09-14FalseFalsePro & Farm775,000$331,572$0$0$No---------------------------Link
Lauri PajuniemiChicago Wolves (CAR)RW251999-09-12FINYes196 Lbs6 ft0NoNoAssign ManuallyNoYes32024-09-21FalseFalsePro & Farm750,000$320,876$0$0$No750,000$750,000$-------750,000$750,000$-------NoNo-------
Lucas JohansenChicago Wolves (CAR)D271997-11-16CANNo176 Lbs6 ft2NoNoAssign ManuallyNoYes32024-09-24FalseFalsePro & Farm995,000$425,696$0$0$No995,000$995,000$-------995,000$995,000$-------NoNo-------Link
Max ComtoisChicago Wolves (CAR)LW261999-01-08CANNo209 Lbs6 ft2NoNoAssign ManuallyNoYes12024-09-14FalseFalsePro & Farm900,000$385,052$0$0$No---------------------------Link
Maxim BarbashevChicago Wolves (CAR)C212003-12-18RUSYes183 Lbs6 ft1NoNoAssign ManuallyNoNo32024-09-21FalseFalsePro & Farm950,000$406,443$0$0$No950,000$950,000$-------950,000$950,000$-------NoNo-------Link
Maxim GroshevChicago Wolves (CAR)LW232001-12-14RUSYes191 Lbs6 ft1NoNoDraftNoNo22024-09-23FalseFalsePro & Farm875,000$374,356$0$0$No875,000$--------875,000$--------No--------Link
Morgan BarronChicago Wolves (CAR)RW261998-12-02CANNo220 Lbs6 ft3NoNoAssign ManuallyNoYes12024-08-03FalseFalsePro & Farm1,350,000$577,577$0$0$No---------------------------Link / NHL Link
Oliver WahlstromChicago Wolves (CAR)RW242000-06-13USANo200 Lbs6 ft2NoNoAssign ManuallyNoNo12024-09-14FalseFalsePro & Farm1,000,000$427,835$0$0$No---------------------------Link / NHL Link
Sasha ChmelevskiChicago Wolves (CAR)C251999-09-13NAYes100 Lbs4 ft0NoNoProspectNoYes12024-09-12FalseFalsePro & Farm725,000$310,180$0$0$No---------------------------
Sean BehrensChicago Wolves (CAR)D212003-03-31USAYes176 Lbs5 ft10NoNoDraftNoNo22024-09-23FalseFalsePro & Farm925,000$395,747$0$0$No925,000$--------925,000$--------No--------Link
Skyler Brind'AmourChicago Wolves (CAR)C251999-07-27CANNo174 Lbs6 ft2NoNoAssign ManuallyNoYes32024-09-22FalseFalsePro & Farm700,000$299,485$0$0$No700,000$700,000$-------700,000$700,000$-------NoNo-------Link
William LockwoodChicago Wolves (CAR)RW261998-06-20USANo178 Lbs6 ft0NoNoAssign ManuallyNoYes32024-09-25FalseFalsePro & Farm900,000$385,052$0$0$No900,000$900,000$-------900,000$900,000$-------NoNo-------Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2724.22181 Lbs5 ft111.81970,370$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Angus CrookshankBlake LizotteMorgan Barron38023
2Cody GlassFyodor SvechkovOliver Wahlstrom32023
3Max ComtoisAlex SteevesJesse Ylonen20032
4Bradly NadeauMorgan Barron10131
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Drew Helleson37131
2Brandon ScanlinAkito Hirose31032
3Drew BavaroLucas Johansen21032
4Brandon ScanlinLucas Johansen11023
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Bradly NadeauAlex SteevesMorgan Barron52014
2Max ComtoisFyodor SvechkovOliver Wahlstrom48014
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Lucas Johansen50023
2Brandon ScanlinAkito Hirose50113
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Alex SteevesAngus Crookshank50131
2Blake LizotteCody Glass50041
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Drew Bavaro50140
2Drew HellesonLucas Johansen50041
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Blake Lizotte50131Drew HellesonDrew Bavaro50131
2Alex Steeves50041Brandon ScanlinAkito Hirose50131
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Blake LizotteBradly Nadeau50023
2Fyodor SvechkovCody Glass50023
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Lucas Johansen51032
2Brandon ScanlinAkito Hirose49032
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Cody GlassBlake LizotteMorgan BarronBrandon ScanlinDrew Helleson
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Angus CrookshankFyodor SvechkovJesse YlonenLucas Johansen
Extra Forwards
Normal PowerPlayPenalty Kill
Cody Glass, Oliver Wahlstrom, Alex SteevesFyodor Svechkov, Angus CrookshankBlake Lizotte
Extra Defensemen
Normal PowerPlayPenalty Kill
Drew Helleson, Akito Hirose, Drew BavaroLucas Johansen, Brandon Scanlin
Penalty Shots
Cody Glass, Morgan Barron, Fyodor Svechkov, Angus Crookshank, Oliver Wahlstrom
Goalie
#1 : Kevin Mandolese, #2 : Dylan Wells


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Abbotsford Canucks2110000010100110000006421010000046-220.5001017270012311051595933104810522185234519555.56%20100.00%01354222860.77%988182854.05%54990260.86%13991068986294573307
2Bakersfield Condors1010000035-2000000000001010000035-200.000347001231105157093310481052216218817100.00%4250.00%01354222860.77%988182854.05%54990260.86%13991068986294573307
3Belleville Senators21100000880211000008800000000000020.5008122000123110515100933104810522182162350700.00%4250.00%01354222860.77%988182854.05%54990260.86%13991068986294573307
4Bridgeport Islanders220000001064110000005321100000053241.000101828001231105156793310481052214611112712325.00%220.00%01354222860.77%988182854.05%54990260.86%13991068986294573307
5Calgary Wranglers1000010045-1000000000001000010045-110.5004480012311051534933104810522149622011100.00%10100.00%01354222860.77%988182854.05%54990260.86%13991068986294573307
6Charlotte Checkers30300000615-91010000026-42020000049-500.00061117001231105151379331048105221130622066700.00%10190.00%01354222860.77%988182854.05%54990260.86%13991068986294573307
7Cleveland Monsters4310000022166220000001156211000001111060.7502242640012311051522093310481052211754636977228.57%13376.92%11354222860.77%988182854.05%54990260.86%13991068986294573307
8Coachella Valley Firebirds21100000972110000004131010000056-120.5009162500123110515789331048105221101241629000%70100.00%01354222860.77%988182854.05%54990260.86%13991068986294573307
9Colorado Eagles220000001129110000004041100000072541.0001116270112311051518793310481052215414260100.00%10100.00%01354222860.77%988182854.05%54990260.86%13991068986294573307
10Hartford Wolf Pack210010001266110000008351000100043141.00012183000123110515115933104810522170198386116.67%4175.00%01354222860.77%988182854.05%54990260.86%13991068986294573307
11Henderson Silver Knights220000001486110000007251100000076141.00014223600123110515127933104810522181338476116.67%4250.00%01354222860.77%988182854.05%54990260.86%13991068986294573307
12Hershey Bears21000010963110000005321000001043141.00091221001231105157993310481052211032915395120.00%50100.00%01354222860.77%988182854.05%54990260.86%13991068986294573307
13Iowa Wild110000001111011000000111100000000000021.000112031001231105151159331048105221197420000%20100.00%01354222860.77%988182854.05%54990260.86%13991068986294573307
14Lehigh Valley Phantoms220000001841411000000633110000001211141.000182846001231105152449331048105221631903811100.00%000%01354222860.77%988182854.05%54990260.86%13991068986294573307
15Milwaukee Admirals11000000808000000000001100000080821.0008132101123110515869331048105221102018100.00%000%01354222860.77%988182854.05%54990260.86%13991068986294573307
16Providence Bruins1100000012481100000012480000000000021.0001218300012311051583933104810522138132202150.00%110.00%01354222860.77%988182854.05%54990260.86%13991068986294573307
17Rochester Americans11000000936000000000001100000093621.00091827001231105157893310481052212492133266.67%10100.00%01354222860.77%988182854.05%54990260.86%13991068986294573307
18Rockford IceHogs11000000651000000000001100000065121.00061117001231105155493310481052213232185240.00%10100.00%01354222860.77%988182854.05%54990260.86%13991068986294573307
19San Diego Gulls110000001311211000000131120000000000021.00013223500123110515999331048105221276224000%110.00%01354222860.77%988182854.05%54990260.86%13991068986294573307
20San Jose Barracuda10001000321100010003210000000000021.000369001231105152593310481052212510618500.00%3233.33%01354222860.77%988182854.05%54990260.86%13991068986294573307
21Springfield Thunderbirds20200000411-71010000027-51010000024-200.00045900123110515619331048105221133372344125.00%10100.00%01354222860.77%988182854.05%54990260.86%13991068986294573307
22Syracuse Crunch22000000174131100000010191100000073441.0001724410012311051518693310481052216629637200.00%30100.00%01354222860.77%988182854.05%54990260.86%13991068986294573307
23Texas Stars2010010058-31000010034-11010000024-210.25056110012311051585933104810522188291226300.00%6350.00%01354222860.77%988182854.05%54990260.86%13991068986294573307
24Toronto Marlies11000000716110000007160000000000021.00071320001231105151019331048105221254215100.00%10100.00%01354222860.77%988182854.05%54990260.86%13991068986294573307
25Tucson Roadrunners1000010034-1000000000001000010034-110.500336001231105153193310481052215513624300.00%20100.00%01354222860.77%988182854.05%54990260.86%13991068986294573307
26Utica Comets44000000459362200000022418220000002351881.000457211700123110515394933104810522111230288111100.00%40100.00%01354222860.77%988182854.05%54990260.86%13991068986294573307
27Wilkes-Barre/Scranton Penguins30200001815-72010000158-31010000037-410.16781119001231105159593310481052211554416587228.57%70100.00%01354222860.77%988182854.05%54990260.86%13991068986294573307
Total492913023112871661212518401101154718324119012101339538680.694287462749021231105153046933104810522119105562439851002424.00%902077.78%11354222860.77%988182854.05%54990260.86%13991068986294573307
_Since Last GM Reset492913023112871661212518401101154718324119012101339538680.694287462749021231105153046933104810522119105562439851002424.00%902077.78%11354222860.77%988182854.05%54990260.86%13991068986294573307
_Vs Conference181040130010058428600110051153610440020049436250.69410016026002123110515108693310481052216881887237235925.71%341070.59%01354222860.77%988182854.05%54990260.86%13991068986294573307
_Vs Division1031001004831174100010020128621000002819970.35048741220212311051561993310481052213911052820017317.65%13376.92%01354222860.77%988182854.05%54990260.86%13991068986294573307

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
4968W12874627493046191055624398502
All Games
GPWLOTWOTL SOWSOLGFGA
4929132311287166
Home Games
GPWLOTWOTL SOWSOLGFGA
25184110115471
Visitor Games
GPWLOTWOTL SOWSOLGFGA
24119121013395
Last 10 Games
WLOTWOTL SOWSOL
810001
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
1002424.00%902077.78%1
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
9331048105221123110515
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
1354222860.77%988182854.05%54990260.86%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
13991068986294573307


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
620Syracuse Crunch1Chicago Wolves10WBoxScore
729Chicago Wolves7Syracuse Crunch3WBoxScore
1050Utica Comets1Chicago Wolves10WBoxScore
1372Chicago Wolves3Wilkes-Barre/Scranton Penguins7LBoxScore
1484Chicago Wolves2Springfield Thunderbirds4LBoxScore
17103Chicago Wolves3Bakersfield Condors5LBoxScore
19114Chicago Wolves4Calgary Wranglers5LXBoxScore
21135Chicago Wolves5Coachella Valley Firebirds6LBoxScore
23146Chicago Wolves4Abbotsford Canucks6LBoxScore
26165Providence Bruins4Chicago Wolves12WBoxScore
29188Hershey Bears3Chicago Wolves5WBoxScore
31197Lehigh Valley Phantoms3Chicago Wolves6WBoxScore
33214Wilkes-Barre/Scranton Penguins3Chicago Wolves1LBoxScore
35233Chicago Wolves7Colorado Eagles2WBoxScore
37244Chicago Wolves7Henderson Silver Knights6WBoxScore
39254Chicago Wolves3Tucson Roadrunners4LXBoxScore
42280Belleville Senators4Chicago Wolves8WBoxScore
43284Springfield Thunderbirds7Chicago Wolves2LBoxScore
46302Chicago Wolves12Lehigh Valley Phantoms1WBoxScore
47309Chicago Wolves11Utica Comets4WBoxScore
49328Chicago Wolves6Cleveland Monsters4WBoxScore
51339Texas Stars4Chicago Wolves3LXBoxScore
53349Hartford Wolf Pack3Chicago Wolves8WBoxScore
55367Charlotte Checkers6Chicago Wolves2LBoxScore
56377Chicago Wolves1Charlotte Checkers5LBoxScore
59401Coachella Valley Firebirds1Chicago Wolves4WBoxScore
61415Colorado Eagles0Chicago Wolves4WBoxScore
63428Chicago Wolves5Bridgeport Islanders3WBoxScore
66448San Jose Barracuda2Chicago Wolves3WXBoxScore
69473Belleville Senators4Chicago Wolves0LBoxScore
71491Cleveland Monsters4Chicago Wolves6WBoxScore
73500Bridgeport Islanders3Chicago Wolves5WBoxScore
76524Chicago Wolves4Hershey Bears3WXXBoxScore
78539Chicago Wolves4Hartford Wolf Pack3WXBoxScore
79553Chicago Wolves8Milwaukee Admirals0WBoxScore
83560Chicago Wolves12Utica Comets1WBoxScore
84573Utica Comets3Chicago Wolves12WBoxScore
87594Chicago Wolves5Cleveland Monsters7LBoxScore
89603Chicago Wolves3Charlotte Checkers4LBoxScore
91624Iowa Wild1Chicago Wolves11WBoxScore
92634Wilkes-Barre/Scranton Penguins5Chicago Wolves4LXXBoxScore
96659Toronto Marlies1Chicago Wolves7WBoxScore
97666Abbotsford Canucks4Chicago Wolves6WBoxScore
99687San Diego Gulls1Chicago Wolves13WBoxScore
102705Chicago Wolves9Rochester Americans3WBoxScore
104721Henderson Silver Knights2Chicago Wolves7WBoxScore
107746Chicago Wolves6Rockford IceHogs5WBoxScore
108753Chicago Wolves2Texas Stars4LBoxScore
110764Cleveland Monsters1Chicago Wolves5WBoxScore
112785Chicago Wolves-Bridgeport Islanders-
115802Chicago Wolves-Hartford Wolf Pack-
117817Rockford IceHogs-Chicago Wolves-
119832Ontario Reign-Chicago Wolves-
122852Chicago Wolves-Manitoba Moose-
124867Chicago Wolves-Iowa Wild-
126878Tucson Roadrunners-Chicago Wolves-
140900Chicago Wolves-Toronto Marlies-
143920Chicago Wolves-Laval Rocket-
145940Rochester Americans-Chicago Wolves-
147955Bakersfield Condors-Chicago Wolves-
148963Calgary Wranglers-Chicago Wolves-
150975Chicago Wolves-Grand Rapids Griffins-
152992Providence Bruins-Chicago Wolves-
1551016Manitoba Moose-Chicago Wolves-
Trade Deadline --- Trades can’t be done after this day is simulated!
1571029Syracuse Crunch-Chicago Wolves-
1601049Grand Rapids Griffins-Chicago Wolves-
1611061Chicago Wolves-Lehigh Valley Phantoms-
1661102Chicago Wolves-San Jose Barracuda-
1681109Chicago Wolves-Ontario Reign-
1691123Chicago Wolves-San Diego Gulls-
1711132Milwaukee Admirals-Chicago Wolves-
1741154Laval Rocket-Chicago Wolves-
1761175Bridgeport Islanders-Chicago Wolves-
1791193Hershey Bears-Chicago Wolves-
1811206Chicago Wolves-Grand Rapids Griffins-
1821214Chicago Wolves-Providence Bruins-
1851235Chicago Wolves-Rochester Americans-
1871252Chicago Wolves-Hershey Bears-
1891266Hartford Wolf Pack-Chicago Wolves-
1901279Toronto Marlies-Chicago Wolves-
1931301Chicago Wolves-Laval Rocket-
1941309Chicago Wolves-Belleville Senators-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueCapacityTeam Popularity
16 0 - 0.00% 0$0$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Salaries CapCoaches Salaries
137,357$ 262,000$ 262,000$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
1,351$ 137,357$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 83 1,351$ 112,133$




Chicago Wolves Players Stat Leaders (Regular Season)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Chicago Wolves Goalies Stat Leaders (Regular Season)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Chicago Wolves Career Team Stats

OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Chicago Wolves Players Stat Leaders (Play-Off)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Chicago Wolves Goalies Stat Leaders (Play-Off)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA