´╗┐
Login

Chicago Wolves
GP: 11 | W: 6 | L: 5
GF: 36 | GA: 35 | PP%: 12.50% | PK%: 90.91%
GM : Chris Floresco | Morale : 60 | Team Overall : 61
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Game Center
San Diego Gulls
8-8-0, 16pts
2
FINAL
3 Chicago Wolves
6-5-0, 12pts
Team Stats
L3StreakOTL1
4-4-0Home Record4-2-0
4-4-0Home Record2-3-0
4-5-1Last 10 Games5-3-2
3.50Goals Per Game3.27
3.31Goals Against Per Game3.18
18.75%Power Play Percentage12.50%
73.53%Penalty Kill Percentage90.91%
Chicago Wolves
6-5-0, 12pts
4
FINAL
5 San Diego Gulls
8-8-0, 16pts
Team Stats
OTL1StreakL3
4-2-0Home Record4-4-0
2-3-0Home Record4-4-0
5-3-2Last 10 Games4-5-1
3.27Goals Per Game3.50
3.18Goals Against Per Game3.31
12.50%Power Play Percentage18.75%
90.91%Penalty Kill Percentage73.53%
Team Leaders
Goals
Jason Dickinson
9
Assists
Mason Appleton
8
Points
Jason Dickinson
15
Plus/Minus
Jason Dickinson
7
Wins
Akira Schmid
6
Save Percentage
Akira Schmid
0.908

Team Stats
Goals For
36
3.27 GFG
Shots For
351
31.91 Avg
Power Play Percentage
12.5%
3 GF
Offensive Zone Start
39.6%
Goals Against
35
3.18 GAA
Shots Against
362
32.91 Avg
Penalty Kill Percentage
90.9%%
2 GA
Defensive Zone Start
39.9%
Team Info

General ManagerChris Floresco
CoachDave Lowry
DivisionCentral
ConferenceWestern Conference
CaptainAlex Wennberg
Assistant #1
Assistant #2


Arena Info

Capacity8,000
Attendance7,992
Season Tickets0


Roster Info

Pro Team24
Farm Team19
Contract Limit43 / 45
Prospects2


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name #C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary
1Jack McBain86XX100.00876077687669756065716573545658060690241883,750$
2Jason Dickinson81XX100.007248857077718862717362765465590606902822,650,000$
3Mason Appleton29X100.007240886674738162537463735462580606802832,166,667$
4Quinton Byfield49X100.00684377648165676168726068645657060660212894,167$
5Axel Jonsson-Fjallby73X100.00674781646961656053676270555857060640261750,000$
6Jansen Harkins20XXX100.00635777636661696066646368546057060630272850,000$
7Saku Maenalanen74X100.00723882617857685550675870515455060630301750,000$
8Anders Bjork27XX100.005748786169646859536459656062580606202711,600,000$
9Nathan Smith58XX100.00615270616567625757616059565857060610251883,750$
10Pontus Holmberg80XX100.00594973616959595968625963545755060610251827,500$
11Oskar Steen48XXX100.00555766616065635969575962546056060600262800,000$
12Stephen Halliday (R)82XX100.00454545454545454545454545454545060450214750,000$
13Braden Schneider6X100.00706692707973796040716081545758060690222925,000$
14Jacob Bryson5X100.006640907371738358407158845459580606902621,850,000$
15Urho Vaakanainen57X100.00654191597676605640705578545658060660252850,000$
16Darren Raddysh77X100.00575369616766626040625867546258060620282762,500$
17Brayden Pachal78X100.00595362606666645640585563545855060590241750,000$
18Marcus Bjork72X100.00594763576966585538605564515654060590261925,000$
19Simon Edvinsson56X100.00545060566963595538565558514949060570213925,000$
Scratches
1Topi Ronni (R)70XX100.00454545454545454545454545454545060450204750,000$
2Elias Salomonsson (R)71X100.00454545454545454545454545454545060450194750,000$
TEAM AVERAGE100.0062497261676365575263576653565506061
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name #CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SPAgeContractSalary
1Akira Schmid39100.0081656585777281727570775654060740242850,833$
2Chris Driedger1100.00646262776760706062606766590606403023,500,000$
Scratches
1Matt Tomkins36100.0051515151515151515151515151060510291750,000$
TEAM AVERAGE100.006559597165616761636065585506063
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Dave Lowry75757575757575CAN5830$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Jason DickinsonChicago Wolves (CAR)C/LW11961570074941162021.95%224722.491234210000222054.49%32300001.2100000210
2Mason AppletonChicago Wolves (CAR)RW1148125003184512268.89%623421.290116210002122046.67%3000001.0200000030
3Jack McBainChicago Wolves (CAR)C/LW11481272032203092113.33%324522.352024210000220170.59%1700000.9800000102
4Urho VaakanainenChicago Wolves (CAR)D11088-16029204390%1426223.84011221000016000%000000.6100000000
5Jacob BrysonChicago Wolves (CAR)D11178-220171711789.09%1729026.37011721000019000%000000.5500000101
6Brayden PachalChicago Wolves (CAR)D110663601337130%720818.970001100000000%000000.5800000000
7Jansen HarkinsChicago Wolves (CAR)C/LW/RW11235-3401316245268.33%017215.6500001000000056.52%18400000.5800000100
8Pontus HolmbergChicago Wolves (CAR)LW/RW11415-4401492101219.05%211010.0900000000000057.14%700000.9000000100
9Anders BjorkChicago Wolves (CAR)LW/RW11415-3207132871714.29%017616.0800001000050050.00%1200000.5700000000
10Marcus BjorkChicago Wolves (CAR)D1105530017410470%1521519.580000000009000%000000.4600000001
11Quinton ByfieldChicago Wolves (CAR)C112240202023335266.06%322920.900006200000121058.82%22100000.3500000010
12Axel Jonsson-FjallbyChicago Wolves (CAR)LW112241201110298216.90%021519.55000720000000050.00%1400000.3700000000
13Oskar SteenChicago Wolves (CAR)C/LW/RW11224-42010121591113.33%211010.0900000000001046.92%13000000.7200000000
14Darren RaddyshChicago Wolves (CAR)D11033-1603064220%1426323.91000121000017000%000000.2300000000
15Nathan SmithChicago Wolves (CAR)C/RW11033-3001410141140%216915.4100000000000033.33%1200000.3500000000
16Saku MaenalanenChicago Wolves (CAR)RW1121312012161871911.11%021419.52000120000000053.85%1300000.2800000010
17Braden SchneiderChicago Wolves (CAR)D11022-2120241716260%1128525.97000621000014000%000000.1400000000
18Simon EdvinssonChicago Wolves (CAR)D11000000000000%250.520000100003000%00000000000000
19Stephen HallidayChicago Wolves (CAR)C/LW11000-440921010%011710.6400001000030050.00%100000000000000
Team Total or Average209366810405602822653519824910.26%100377518.063584522000021606154.47%97300000.5500000664
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Akira SchmidChicago Wolves (CAR)116320.9082.64750013335800100110210
2Chris DriedgerChicago Wolves (CAR)10000.6674.2914001300000011000
Team Total or Average126320.9062.67764013436100101111210


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Acquired By Last Trade Date Force Waivers Waiver Possible Contract Contrat Signature Date Type Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10No Trade Year 2No Trade Year 3No Trade Year 4No Trade Year 5No Trade Year 6No Trade Year 7No Trade Year 8No Trade Year 9No Trade Year 10Link
Akira SchmidChicago Wolves (CAR)G2405/12/00No205 Lbs6 ft5NoNoN/ANoNo2Pro & Farm850,833$0$0$No850,833$--------No--------Link
Anders Bjork (1 Way Contract)Chicago Wolves (CAR)LW/RW2708/05/96No190 Lbs6 ft0NoNoN/ANoNo1Pro & Farm1,600,000$1,600,000$0$No------------------Link
Axel Jonsson-FjallbyChicago Wolves (CAR)LW2602/10/98No189 Lbs6 ft1NoNoN/ANoNo1Pro & Farm750,000$0$0$No------------------Link
Braden SchneiderChicago Wolves (CAR)D2209/20/01No208 Lbs6 ft3NoNoN/ANoNo2Pro & Farm925,000$0$0$No925,000$--------No--------Link
Brayden PachalChicago Wolves (CAR)D2408/23/99No203 Lbs6 ft2NoNoN/ANoNo1Pro & Farm750,000$0$0$No------------------Link
Chris DriedgerChicago Wolves (CAR)G3005/18/94No207 Lbs6 ft4NoNoN/ANoNo2Pro & Farm3,500,000$0$0$No3,500,000$--------No--------Link
Darren RaddyshChicago Wolves (CAR)D2802/28/96No200 Lbs6 ft1NoNoN/ANoNo2Pro & Farm762,500$0$0$No762,500$--------No--------Link
Elias SalomonssonChicago Wolves (CAR)D1908/31/04 4:46:17 AMYes183 Lbs6 ft1NoNoN/ANoNo4Pro & Farm750,000$0$0$No750,000$750,000$750,000$------NoNoNo------
Jack McBainChicago Wolves (CAR)C/LW2401/06/00No201 Lbs6 ft3NoNoN/ANoNo1Pro & Farm883,750$0$0$No------------------Link
Jacob Bryson (1 Way Contract)Chicago Wolves (CAR)D2611/18/97No176 Lbs5 ft9NoNoN/ANoNo2Pro & Farm1,850,000$1,850,000$0$No1,850,000$--------No--------Link
Jansen HarkinsChicago Wolves (CAR)C/LW/RW2705/23/97No197 Lbs6 ft2NoNoN/ANoNo2Pro & Farm850,000$0$0$No850,000$--------No--------Link
Jason Dickinson (1 Way Contract)Chicago Wolves (CAR)C/LW2807/04/95No200 Lbs6 ft2NoNoN/ANoNo2Pro & Farm2,650,000$2,650,000$0$No2,650,000$--------No--------Link
Marcus BjorkChicago Wolves (CAR)D2611/24/97No211 Lbs6 ft4NoNoN/ANoNo1Pro & Farm925,000$0$0$No------------------Link
Mason Appleton (1 Way Contract)Chicago Wolves (CAR)RW2801/15/96No197 Lbs6 ft3NoNoN/ANoNo3Pro & Farm2,166,667$2,166,667$0$No2,166,667$2,166,667$-------NoNo-------Link
Matt TomkinsChicago Wolves (CAR)G2906/19/94No194 Lbs6 ft3NoNoN/ANoNo1Pro & Farm750,000$0$0$No------------------Link
Nathan SmithChicago Wolves (CAR)C/RW2510/19/98No177 Lbs6 ft0NoNoN/ANoNo1Pro & Farm883,750$0$0$No------------------Link
Oskar SteenChicago Wolves (CAR)C/LW/RW2603/09/98No193 Lbs5 ft10NoNoN/ANoNo2Pro & Farm800,000$0$0$No800,000$--------No--------Link
Pontus HolmbergChicago Wolves (CAR)LW/RW2503/09/99No202 Lbs6 ft0NoNoN/ANoNo1Pro & Farm827,500$0$0$No------------------Link
Quinton ByfieldChicago Wolves (CAR)C2108/19/02No220 Lbs6 ft5NoNoN/ANoNo2Pro & Farm894,167$0$0$No894,167$--------No--------Link
Saku MaenalanenChicago Wolves (CAR)RW3005/29/94No214 Lbs6 ft4NoNoN/ANoNo1Pro & Farm750,000$0$0$No------------------Link
Simon EdvinssonChicago Wolves (CAR)D2102/05/03No209 Lbs6 ft6NoNoN/ANoNo3Pro & Farm925,000$0$0$No925,000$925,000$-------NoNo-------Link
Stephen HallidayChicago Wolves (CAR)C/LW2107/02/02 2:32:31 AMYes214 Lbs6 ft4NoNoN/ANoNo4Pro & Farm750,000$0$0$No750,000$750,000$750,000$------NoNoNo------
Topi RonniChicago Wolves (CAR)C/LW2005/05/04 3:39:10 AMYes181 Lbs6 ft2NoNoN/ANoNo4Pro & Farm750,000$0$0$No750,000$750,000$750,000$------NoNoNo------
Urho VaakanainenChicago Wolves (CAR)D2501/01/99No200 Lbs6 ft2NoNoN/ANoNo2Pro & Farm850,000$0$0$No850,000$--------No--------Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2425.08199 Lbs6 ft21.961,141,424$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Jack McBainJason DickinsonMason Appleton30122
2Axel Jonsson-FjallbyQuinton ByfieldSaku Maenalanen30122
3Anders BjorkJansen HarkinsNathan Smith25122
4Stephen HallidayOskar SteenPontus Holmberg15122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Braden SchneiderJacob Bryson30122
2Urho VaakanainenDarren Raddysh30122
3Brayden PachalMarcus Bjork25122
4Braden SchneiderJacob Bryson15122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Jack McBainJason DickinsonMason Appleton60113
2Axel Jonsson-FjallbyQuinton ByfieldSaku Maenalanen40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Braden SchneiderJacob Bryson60113
2Urho VaakanainenDarren Raddysh40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Jason DickinsonJack McBain60131
2Mason AppletonQuinton Byfield40131
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Braden SchneiderJacob Bryson60140
2Urho VaakanainenDarren Raddysh40140
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Jason Dickinson60140Braden SchneiderJacob Bryson60140
2Jack McBain40140Urho VaakanainenDarren Raddysh40140
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Jason DickinsonJack McBain60122
2Mason AppletonQuinton Byfield40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Braden SchneiderJacob Bryson60122
2Urho VaakanainenDarren Raddysh40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Jack McBainJason DickinsonMason AppletonBraden SchneiderJacob Bryson
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Jack McBainJason DickinsonMason AppletonBraden SchneiderJacob Bryson
Extra Forwards
Normal PowerPlayPenalty Kill
Stephen Halliday, Jansen Harkins, Anders BjorkStephen Halliday, Jansen HarkinsAnders Bjork
Extra Defensemen
Normal PowerPlayPenalty Kill
Brayden Pachal, Marcus Bjork, Simon EdvinssonBrayden PachalMarcus Bjork, Simon Edvinsson
Penalty Shots
Jason Dickinson, Jack McBain, Mason Appleton, Quinton Byfield, Axel Jonsson-Fjallby
Goalie
#1 : Akira Schmid, #2 : Chris Driedger
Custom OT Lines Forwards
Jason Dickinson, Jack McBain, Mason Appleton, Quinton Byfield, Axel Jonsson-Fjallby, Saku Maenalanen, Saku Maenalanen, Jansen Harkins, Anders Bjork, Nathan Smith, Pontus Holmberg
Custom OT Lines Defensemen
Braden Schneider, Jacob Bryson, Urho Vaakanainen, Darren Raddysh, Brayden Pachal


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Milwaukee Admirals54100000201373300000011742110000096380.80020385800171171203120898854205483215912216.67%150100.00%020638553.51%21038854.12%11420057.00%3372402618616688
2San Diego Gulls624000001622-631200000811-331200000811-340.3331630461117117114812089885415752241231218.33%7271.43%020638553.51%21038854.12%11420057.00%3372402618616688
Total1165000003635164200000191815230000017170120.5453668104111711713511208988543621005628224312.50%22290.91%020638553.51%21038854.12%11420057.00%3372402618616688
_Since Last GM Reset1165000003635164200000191815230000017170120.5453668104111711713511208988543621005628224312.50%22290.91%020638553.51%21038854.12%11420057.00%3372402618616688
_Vs Conference1165000003635164200000191815230000017170120.5453668104111711713511208988543621005628224312.50%22290.91%020638553.51%21038854.12%11420057.00%3372402618616688
_Vs Division114100000363516300000019181511000001717080.3643668104111711713511208988543621005628224312.50%22290.91%020638553.51%21038854.12%11420057.00%3372402618616688

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
1112OTL136681043513621005628211
All Games
GPWLOTWOTL SOWSOLGFGA
116500003635
Home Games
GPWLOTWOTL SOWSOLGFGA
64200001918
Visitor Games
GPWLOTWOTL SOWSOLGFGA
52300001717
Last 10 Games
WLOTWOTL SOWSOL
530200
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
24312.50%22290.91%0
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
120898854171171
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
20638553.51%21038854.12%11420057.00%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
3372402618616688


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
2 - 2024-04-205Milwaukee Admirals3Chicago Wolves4BWBoxScore
4 - 2024-04-2213Milwaukee Admirals2Chicago Wolves3BWXBoxScore
6 - 2024-04-2421Chicago Wolves4Milwaukee Admirals5ALXBoxScore
8 - 2024-04-2629Chicago Wolves5Milwaukee Admirals1AWBoxScore
10 - 2024-04-2837Milwaukee Admirals2Chicago Wolves4BWBoxScore
16 - 2024-05-0459San Diego Gulls5Chicago Wolves3BLBoxScore
18 - 2024-05-0663San Diego Gulls4Chicago Wolves2BLBoxScore
20 - 2024-05-0867Chicago Wolves1San Diego Gulls0AWBoxScore
22 - 2024-05-1071Chicago Wolves3San Diego Gulls6ALBoxScore
24 - 2024-05-1275San Diego Gulls2Chicago Wolves3BWBoxScore
26 - 2024-05-1479Chicago Wolves4San Diego Gulls5ALXBoxScore



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Capacity45003500
Ticket Price350
Attendance27,00020,953
Attendance PCT100.00%99.78%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueCapacityTeam Popularity
28 7992 - 99.90% 157,500$945,000$8000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
0$ 1,912,750$ 1,687,750$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 0$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 0 0$ 0$




Chicago Wolves Players Stat Leaders (Regular Season)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Chicago Wolves Goalies Stat Leaders (Regular Season)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA

Chicago Wolves Career Team Stats

OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT

Chicago Wolves Players Stat Leaders (Play-Off)

# Player Name GP G A P +/- PIM HIT HTT SHT SHT% SB MP AMG PPG PPA PPP PPS PKG PKA PKP PKS GW GT FO% HT P/20 PSG PSS

Chicago Wolves Goalies Stat Leaders (Play-Off)

# Goalie Name GP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA